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Abstract. We examine spin vortices in ferromagnetic quantum Heisenberg models with planar anisotropy
on two-dimensional lattices. The symmetry properties and the time evolution of vortices built up from
spin-coherent states are studied in detail. Although these states show a dispersion typical for wave packets,
important features of classical vortices are conserved. Moreover, the results on symmetry properties provide
a construction scheme for vortex-like excitations from exact eigenstates, which have a well-controlled time
evolution. Our approach works for arbitrary spin length both on triangular and square lattices.

PACS. 75.10.Jm Quantized spin models — 75.10.Hk Classical spin models

1 Introduction

Vortices are a central issue in classical models for two-
dimensional magnets, for a review see [1]. The dynam-
ics of individual vortices has been studied extensively
for Heisenberg models with easy-plane symmetry, usu-
ally combining simulations performed on discrete lattices
with analytical approaches via continuum approximations
[2—4]. These studies have led to remarkable insight in the
dynamics of vortices in certain classical magnetic systems
in terms of collective variables.

With respect to statistical properties of such systems,
vortices play a crucial role in the scenario of phase transi-
tions of the Kosterlitz-Thouless type, where vortices and
antivortices are bound in pairs below a transition tem-
perature TxT while they unbind above Tkt [5]. Follow-
ing these considerations, the high-temperature phase of
a planar ferromagnet was described by a dilute gas of
topological defects, and the dynamic form factor of such
a system was obtained using further reasonable approx-
imations [6]. These results are in qualitative agreement
with neutron scattering measurements on suitable quasi-
two-dimensional magnetic materials. In particular, the de-
pendence of the dynamic form factor on wavelength and
temperature is found to be consistent in theory and ex-
periment. These findings strongly support the classical
description of such magnetic systems and in particular
the existence of vortex-like excitations, although impor-
tant aspects of this approach are still under discussion;
for a critical overview on recent research see [7].

On the other hand, real magnetic materials consist of
quantum spins. Therefore, the question naturally arises
whether quantum states exist which mirror the essential
features of classical vortices. The standard answer given in
the above literature and in many other papers is as follows:
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magnetic systems with spin lengths S > 1 should be well-
described by classical models, while for smaller spin length
quantum effects become important. Nevertheless, classical
models are sometimes used also in this case, where quan-
tum effects are approximated by renormalizations of cou-
pling parameters in the Hamiltonian, see in particular [8]
and references therein. In this work we present a concept
of quantum vortices which is closely related to the classical
limit, but takes into account the full quantum mechanics.

The plan of this paper is as follows: in the next section
we introduce the spin model we are dealing with and sum-
marize some of its important properties. In Section 3 we
examine spin vortices built up from spin-coherent states.
The results obtained there will lead us in Section 4 to a
construction of vortex-like states from eigenstates of the
Hamiltonian.

2 The model

We consider a Heisenberg ferromagnet with planar ex-
change anisotropy acting on spins of length S on either
a triangular or square lattice,

J Jr Qo QY & dz Oz
Hz_gz[sisj+S§/s;!+(1—x)sisj, (1)

(i,)

with J > 0 and the sum going over all pairs of nearest
neighbors. We will be interested in planar quantum spin
vortices, whose classical counterparts are known to be sta-
ble for sufficiently large anisotropy parameters A [2]. In
the following we will always assume A = 1, which lies in
the region of classical stability for both lattice types. To
construct vortices we consider finite samples of a triangu-
lar or square lattice with open boundaries, which have a
rotational symmetry with respect to an axis intersecting
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Fig. 1. Classical vortex structures on lattice samples which
have a rotational symmetry axis intersecting the center of the
vortex.

a central plaquette; examples are shown in Figure 1. For
definiteness and brevity we concentrate on the triangular
case throughout this paper and only briefly comment the
case of the square lattice, where analogous results hold.

For further reference let us briefly summarize some
simple properties of such systems using obvious notation.
The Hamiltonian is invariant under rotation of all spins
around the z-direction in spin space, under reversal of the
z-component of all spins and under appropriate rotations
of the lattice. An adequate basis of the Hilbert space is ob-
vious: for N spins of length S we define a typical eigenstate
of the z-component of the total spin by |S#%) = ®i]\;_01 |S7)
with §% = 3. §7. The corresponding symmetry-adapted
basis vectors are given by

1S%,m) = N <|SZ> e EMR|SH) 4 eﬂ“%mmsa)
(2)

withm € {—1,0,1}, M being a normalization factor and R
the operator of a clockwise rotation of the lattice by 27/3
or, equivalently, a counterclockwise cyclic permutation of
the local spin states. The states |S*,m) form invariant
subspaces of (1), where the quantum numbers 5%, m cor-
respond to the symmetry of the model under rotations in
spin space and real space, respectively. For S% £ 0 eigen-
states of the Hamiltonian (1) with energy F are denoted
by |S#,m, E) and chosen to fulfill
|—Sz,m,E>:F|SZ,m,E>, (3>
where F' = [], F; is the spin flip operator which acts on
each lattice site as Fj: |S7) — | — S7), or equivalently
FSEFt = SF

FS?F+ = 67, (4)
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Note that F' is the same as a rotation of the spins by 7
around the z-axis up to a possible phase factor; namely
it holds exp(£erS?) = (41)25F;. For §% = 0 eigenstates
can be characterized further by the spin flip symmetry
and are denoted by |0,m, E, f) with f € {—1,1} being
the eigenvalue of F'. Generally, each eigenstate with quan-
tum numbers S*%, m has got degenerate counterparts in
subspaces with the same values of |S?|, |m|. Degenerate
eigenstates which differ only in the sign of m are related
by a complex conjugation of the spin wave function.

The case of a square lattice is obviously analogous;
one simply has to infer in equation (2) rotations by /2
instead of 27/3 with m € {-1,0,1,2,} (mod 4).

3 Vortices built out of spin-coherent states

We now examine vortices which are built up from spin-
coherent states on each lattice site. Such objects have
recently been discussed by the present authors within a
semiclassical approach [9]. Here we take into account the
full quantum mechanics.
In the Hilbert space of a spin of length S a spin-
coherent state |S; 9, ) is defined by the equation
sv,p* S15;9, ) = hS|S; 9, ¢) (5)
for the direction sy , = (sin® cos ¢, sin ¥ sin g, cos ) [10].
These states can be considered as the immediate quantum
analogue to classical spin vectors. In the usual basis they
can be expressed as

1550, ) =U(0, ) |S) = is: (25)% (COS (g))QS_n

n=0

X (sin (g)) (=515 _p)

(6)

with

U(¥,¢) = exp (—%@S’Z) exp (—%ﬂé’y) . (7)
For our purposes we shall define here the vorticity v of
a quantum state completely analogously to the classical
case by

1
Y= on ZAQDiJ? Ap; i = (p; — i) € [-m, 7. (8)

i—J

The sum is taken over a closed path on the lattice in coun-
terclockwise direction and the classical-like angles ¢; are
given by local expectation values of spin operators,

(57)

@i = tan~! (mod 27).

(5

Thus, the vorticity is a nonlinear functional of the un-
derlying quantum state. In the following we shall restrict
ourselves to the case |v| = 1.

9)

~
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We now model a planar vortex as a tensor product of
spin-coherent states,

N-1
W) = Q) 15504, 1), (10)
=0

where we take ¥; = 7/2 for all ¢ and the angles ¢; to be
given by the classical values as depicted in the examples of
Figure 1. This choice leads to a vortex (denoted by |4 )
with v = 1), while the mapping ¢; — —¢; converts it into
an antivortex |¢_) with v = —1. From (6) one sees that
[+) and |¢_) are related via a complex conjugation of
the spin wave function, which is the same here as a spin
flip

Y1) = Fly-). (11)

Before examining further the quantum states (10) let us
briefly remark on the classical vortex. As seen in Fig-
ure 1, in the small system (a) all directions of the classi-
cal spins can be derived by intuitive symmetry arguments
and are the same as in the well-known continuum solu-
tion ¢(z,y) = tan~!(y/z) + constant with z, y denoting
Cartesian coordinates in the plane. In the system (b) the
same holds for the inner lattice sites labelled by 0, 1, 2
and 5, 8, 11, but not for the outer ones. E.g. it is easy to
see that the sum of the classical vectors on 3 and 4 must
be always parallel to the spin on 0, but the exact value
of, say, ¢3 must be calculated in detail and turns out to
be different from the continuum solution. In system (c) of
Figure 1 one has the same situation for the sites 4, 5 and so
on. Note also that the classical vortex is a static solution
only if its center coincides with the center of the system,
because otherwise its image vortices created by the bound-
aries cause a movement of the vortex center. Within the
continuum approximation of the system this situation is
completely analogous to two-dimensional electrostatics.

Now we analyze the states [i1) with respect to the
symmetries of the Hamiltonian. Let us concentrate again
on the triangular case. The scalar product of the vortex
(10) with a typical basis vector (2) is

(57 mlpa) = N ((87ps) + e (87| R ups)

+e TS (R ) (12)
The application of R = R™! on [¢)+) is the same as a
counterclockwise (clockwise) rotation of each local spin-
coherent state by an angle of 27/3, i.e. all angles ¢; in
(10) get a turn of £27/3. Therefore, with the help of (6)
one finds for integer spin length S

o (S%|¢a)
=0

; S*Fm=0 (mod 3)
(8%, mlips) . (13)
otherwise

and similarly for half-integer S

z z N —
s 5 g

=0 otherwise
(14)

: Vortices in quantum spin systems
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Fig. 2. Total square overlap of |¢4) in invariant subspaces
of the Hamiltonian. The dashed line is a Gaussian with width
AS*.

These relations determine the invariant subspaces of the
Hamiltonian in which the vortex state |¢1+) has non-
vanishing overlap. We therefore call them selection rules.
To cover the case of the square lattice one simply has to
replace (mod 3) with (mod 4).

The square moduli of the coefficients in the expan-
sion (6) form a binomial distribution of range 25 with a
probability parameter p = sin?(¢9/2). This is the proba-
bility distribution for the results of measurements of the
z-component of an individual spin being in the state (6).
By an elementary theorem of stochastics, the distribution
of a finite sum of quantities which are binomial-distributed
with a common parameter p is again of the binomial type
with the same parameter and a range just given by the
sum of the individual ranges. In a planar vortex we have
p; = sin®(w/4) = 1/2 for all 4 and therefore

. 2SN \ 1
ZEE:KS ,m, Blys)|* = (SN_SZ> 25N

The sum goes over all eigenstates having S* as the quan-
tum number of the total spin; for S* = 0 the states
|0, m, E, f) have to be inserted and summed over f as
well. The mean value of this symmetric distribution is of
course zero and the square variance is given by

SN
2

According to the central limit theorem of stochastics, the
expression (15) approaches a Gaussian shape for large SN,
where

(15)

(AS7)* = (16)

b
> Sl m B = [ deglo)

aAS*<S*<bAS* m,E
(17)

SN —o0

with the normalized Gaussian distribution g¢(z) =
1/v2mexp(—2?/2) and real numbers a < b. If one fixes
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a certain value of m in the above summations, only ev-
ery third value of S* gives a non-vanishing contribution
because of the selection rules (13, 14). Thus we find

lim
SN—o0

+oo
S lsTm Bl = [ degln) =3, (8)
$*.E 3

— 00

i.e. for an infinite system, N — oo, or in the classical
limit,

h—0, S— oo, hS=constant, (19)
the (anti-)vortex |11 ) has the same square overlap in all
subspaces characterized by different rotational quantum
numbers m € {-1,0,1}.

The same arguments hold for the square lattice with 3
to be replaced with 4 in (18).

In summary, the above equations characterize the
states |t ) with respect to the symmetries of the system.
In Figure 2 we have illustrated the results for the system
shown in Figure la (N =6) and S = 5/2.

Next we analyze the states |1 ) with respect to the
exact eigenstates of the model (1). To this end we have nu-
merically diagonalized the full Hamiltonian for small sys-
tems, i.e. have computed all eigenvalues and eigenvectors
in the invariant subspaces. This procedure can be done
with today’s computers for the system (a) in Figure 1 for
spin lengths S = 1/2, 1, ..., 5/2, while for larger lattices
like (b) and (c) one is still restricted to S = 1/2.

Let us first consider the system shown in Figure la.
The expectation value of the Hamiltonian is

3
(sl Hlis) = — 2T (1S (20)
Its variance has been obtained in reference [9] and reads
here

23

AH = J(hS)* 5 -

(21)
As it must be, this quantity vanishes in the classical limit
(19). Figure 3 shows histograms of the square overlap of
|1+ ) with the eigenstates of the Hamiltonian and the den-
sity of states for S = 2 as a function of the energy; for
other spin length S = 1/2, 1, ..., 5/2 the data looks
qualitatively similar. The time evolution of the system be-
ing initially in the state 1)1 ) can be followed in terms of

(W2 ()| (t) = (xle™m [ys),

which is essentially the Fourier transform of the data
shown in the upper diagram of Figure 3. Therefore this
quantity decays on a time scale given by the uncertainty
relation

(22)

AHAt >

N | St

; (23)

which is in full agreement with our numerical findings even
for comparatively large spin lengths like S = 5/2, where a
classical-like behaviour of spin systems is often assumed.
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Fig. 3. Square overlap of |¢+) with eigenstates of the Hamil-
tonian (upper diagram) and density of states as a function of
the energy for the system of Figure 1la and S = 2.

Thus, even for large S the time dependence of the scalar
product (22) is the same as for any usual dispersive wave
packet, in contrast to the classical vortex which is a non-
linear coherent excitation. This is due to the fact that the
classical limit (19) is not approached properly by taking a
large spin length but keeping 7 as finite as it is.

In spite of this general statement, the analysis of local
expectation values

(SF(1)) = (uler TS 7 )

shows that certain features of the initial vortex structure
nevertheless remain present in the time evolution of the
state. First note that the local spin expectation values
on sites ¢, j connected by a rotation of the lattice, i.e.
S’f‘ = RS®R™, are related by

(57(1)) = (57 (1),

as it is intuitively obvious and can be shown easily with
the help of (13, 14). Therefore, the vorticity of the central
plaquette is necessarily conserved.

Let us now discuss the time evolution of the vortex in
more detail. For the system in Figure la our numerical
results are as follows. The expectation values (S7(t)) are
strictly zero for all times, lattice sites and spin lengths
S =1/2, 1, ..., 5/2. This is surprising since only the
z-component of the total spin is conserved due to sym-
metry. In Figure 4 we have plotted the time evolution
of the in-plane spin components for the state |¢;) and
S = 2. The upper diagram shows |(S;"(¢))|, which may be
seen as an “effective spin length”. This quantity decays for
both classes of lattice sites on a time scale given by (23)
to comparatively small numbers and even becomes zero
for certain times. The lower diagram shows the direction
angles ¢; calculated from (9). Surprisingly, these angles
remain constant up to changes of m, which occur when
|(S;"(t))] goes through zero, i.e. the spin expressed by its

(24)

(SH(t)) = e F(SH(t)), (25)
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expectation values reverses its direction. The times when
such reversals occur are not identical for both classes of
sites, but apparently strongly correlated. Note that this
gives rise to quantum fluctuations of the vorticity as de-
fined in (8). For instance, if the inner lattice sites 0, 1, 2
have undergone such a reversal while the outer ones have
not, the vorticity on the three outer plaquettes is changed
from 0 to —1, while the vorticity of the central plaquette is
preserved as mentioned before. An evaluation of the first
1000 time units after starting the dynamics shows that in
about 80% of this time interval the vorticities on all pla-
quettes have their initial values, while in the remaining
time the vorticities of the outer plaquettes are changed
to £1. This shows the strong correlation in the spin dy-
namics also seen in Figure 4. It is an interesting specu-
lation whether such fluctuation phenomena are related to
the spontaneous appearance of vortex-antivortex pairs (in
larger systems), which is well-known from classical spin
models.

The findings described above hold similarly for all spin
lengths S = 1/2, 1, ..., 5/2 and both types of states

[P+).

In the system of Figure 1b some new observations are
made. As already mentioned the numerical analysis is re-
stricted to S = 1/2. The spins on the inner lattice sites 0,
1, 2 and 5, 8, 11 show completely the same behaviour as
in the system described before, while the time evolution of
spins on the outer sites, say 3 and 4, is different. Here small
z-components (S7(t)) arise which are plotted in the upper
diagram of Figure 5. For symmetry reasons these quan-
tities differ in sign on sites which are inequivalent under
rotation, since the expectation value of the z-component
ot the total spin is constantly zero. Moreover, also the in-
plane angles ¢; are not conserved (up to changes by )
as shown in the lower diagram. But remarkably, the sum
(S3(t))+(Sa4(t)) is always parallel or antiparallel to (So(t))
with the orientations being correlated in a similar way as
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described before. This is also a strong reminiscence of the
classical vortex structure.

The differences in the behaviour of the spins found in
the system of Figure 1b are a surprising parallel to our
previous remark on spin directions in the classical vortex.
Here the outer lattice sites are also distinguished from the
inner ones, since their spins are not described by the static
continuum solution.

Summarizing, we have demonstrated that the states
|t+), although they show dispersion, preserve important
properties of classical vortices.

4 Vortices constructed from exact eigenstates

Since the time dependence of the spin vortices presented in
the last section is rather complicated, it is desirable to find
vortex-like quantum states which have a well-controlled
time evolution. To this end the symmetry rules (13, 14)
provide a simple construction scheme. It is useful to dis-
tinguish three different cases.

(4) Triangular lattice, SN integer: a vortex-like quan-
tum state is given in terms of exact eigenstates of the
Hamiltonian by the following ansatz:

1

Ix+) =
Ve 12 4 |aol? + Jou ]2

X (OL,1| - 17:F17E1> + Oéo|0,0,E0,f> + Ot1|1,:|:1,E1>) .
(26)

This is a linear combination of eigenstates which has
nonzero amplitudes only for quantum numbers “allowed”
by the rules (13, 14) and is restricted to the most im-
portant contributions with |S*| < 1. From each invari-
ant subspace only one eigenstate is involved. The states
with S* = £1 are chosen to be degenerate (which is al-
ways possible). Thus (26) is effectively a two-level-system
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with an internal frequency w = (E; — Ep)/h. Denoting
[x+(t)) = exp(—(2/h)Ht)|x+) one finds similarly as in
(25):

(x= 1S Ixe (1)) = e F (xe (1) x 2 (1),

where the lattice sites i, j are related by a rotation. There-
fore the central plaquette carries a constant vorticity of
v = =£1. For |a_1| = |aa] it holds:

(27)

(xx(@®)SZx£(t) =0

for all sites ¢ and the expectation values of the in-plane
components are given by

(28)

A 2la1a0](0,0, Eo, 1|57 — 1,F1, Ey)
t S+ t _ s YUy ) '3 ) )
O (D18 T (®) gl (5 4 [agP

X exp (% (p—1 — ¢+1)> cos (uﬂﬁ + ¢o — % (p—1 + ¢+1)),
(29)

where we have inferred oy = || exp(1¢p;) and assumed f =
1 for simplicity; the case f = —1 leads only to unimportant
additional phase factors. To derive (28, 29) the relations
(3, 4) have been used.

Thus, the vector of the local expectation values of the
spin components has a constant direction (up to rever-
sal) on each site while its length varies harmonically with
the frequency w in time. Differently from the vortices con-
structed from spin-coherent states, all vectors of expecta-
tion values lie strictly in the plane and their reversals, i.e.
the zeros of their length, occur simultaneously on all lat-
tice sites. Therefore no fluctuations of vorticity arise. The
above construction works on triangular lattices of the type
shown in Figure 1 and of arbitrary size. It provides quan-
tum states with a very simple time evolution and typical
properties of vortices.

To illustrate this, let us return to the system la. Fig-
ure 6 shows the lower part of the spectrum for S = 2 as
a function of S”%. The ground state has quantum numbers
5% =0, f =0 and is part of a band of states with m = 0.
Well separated from this we have a band of degenerate
states with m = +1 and next a more or less continuum-
like distribution of states. This turns out to be qualita-
tively the same for the other spin lengths considered here.
The choice of states to be used in (26) is certainly not
unique. To give a definite example, let us choose the com-
bination with lowest possible energy, i.e. we take the state
with §% =0, m = 0 to be the ground state and the other
ones from the excited elementary band. Note that the ex-
pectation value of energy for such a linear combination is
much lower than the expression (20), which corresponds
directly to the energy of a classical vortex. In Table 1 we
present the expectation values of the in-plane spin com-
ponents for different spin lengths in the state |x4) at time
t = 0, where we have set all |oy] = 1 and adjusted the
phases ¢; in a manner that the argument of the cosine in
(29) vanishes and the spin on the site 0 has ¢g = 0. Ob-
viously, the “effective spin lengths” are strongly reduced

The European Physical Journal B
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Table 1. Expectation values of in-plane spin components in
the state |x+) constructed from elementary excitations (see
text).

S xlSTIxa)l w0 e lSTIxa)l s

1/2 0.0522 0° 0.1785 60°
1 0.0675 0° 0.2646 60°
3/2 0.0814 0° 0.3295 60°
2 0.0938 0° 0.3835 60°

compared with the original ones. This was also found in
the previous section in the time evolution of a vortex built
out of spin-coherent states (cf. Fig. 4). The importance of
this effect has also been stressed by other authors using a
variational approach to the spin dynamics [11,12].

As mentioned above, the central plaquette has vortic-
ity v = 1, and the directions on the other sites also exactly
mirror the classical vortex structure. This is a non-trivial
property since the only strict relation between these direc-
tions is given by (27). This observation can also be made
for other choices of eigenstates, mainly from the lower part
of the spectrum, but for an arbitrary linear combination
of the form (26) this is not the case.

Thus we have demonstrated the existence of vortex-
like quantum states built up from elementary excitations,
whose energy is much lower than the semiclassical vortex
examined in the previous section. The energy of a single
(semi-)classical vortex is known to grow logarithmically
with the size of the system. The construction presented
here relies only on symmetry properties and works for ar-
bitrary system size. Therefore, the energy of the vortex-
like quantum state discussed in the above example must
be assumed to remain in the order of the exchange integral
J (or at least finite) even in an infinite system, since other-
wise the energy difference between the lowest and the first
excited band of quantum states would have to grow with



J. Schliemann and F.G. Mertens: Vortices in quantum spin systems

increasing system size to macroscopic values (or infinity),
which is completely unlikely.

We only sketch the remaining two cases.

(ii) Triangular lattice, SN half-integer: here all values
of S# are also half-integer and a vortex-like quantum state
can be constructed as (¢f. (14)):

1 1
_,:Fl,E>—|—oz1|§,:|:1,E>>,

xe) ! ( |
= |0 _ —_
X e tlaaPy 2
(30)

which also has the properties (27, 28) for |a_i| = |ou|.
Therefore the spin structure expressed in local expecta-
tion values is also planar and the central plaquette carries
a vorticity of £1. The spin structure on other plaquettes
depends on further details and can be examined as above.
As the involved eigenstates with different quantum num-
bers are chosen degenerate, we obtain an exact eigenstate
which has typical features of a vortex, at least with respect
to its center.

(éi1) Square lattice, SN necessarily integer: this case is
merely analogous to (7) with the extension that the eigen-
state in (26) with S* = 0 may may be chosen from two
different subspaces (m = 0 or m = 2). This slightly gen-
eralizes the selection rules (13, 14), which give only one of
these two possibilities, and leads also to different vortici-
ties.

5 Conclusions

In this work we have examined planar quantum spin vor-
tices in ferromagnetic Heisenberg models taking into ac-
count the full quantum mechanics.

Vortices built up from spin-coherent states are stud-
ied in detail. These objects can be seen as the immediate
quantum analogue of a classical static vortex on a discrete
lattice. Important results on their symmetry properties
are given by the relations (13-15) and are illustrated in
Figure 2. The time evolution of such vortices is in general
quite complicated and, from a global point of view, typ-
ical for quantum mechanical wave packets. On the other
hand, a detailed numerical study of the local spin expec-
tation values shows that important properties of the ini-
tial classical-like vortex structure are conserved. This may
be viewed as a reminiscence of the topological character
of the classical vortex solution, although such topological
arguments do not apply strictly in a discrete system.

Our symmetry analysis heavily relies on the symmetry
of the underlying lattice sample with respect to the vor-
tex center as shown in Figure 1. To characterize a vortex
whose center lies not in the center of system, one may con-
sider a subsystem which has this property. The quantum
vortex state projected onto the Hilbert space of this sub-
system should have similar properties as found here, e.g.
the selection rules (13, 14) should hold approximately, but
not exactly. We expect the deviations from these selection
rules to result in a movement of the vortex center, as it is
well-known from the classical vortex.
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Our observations should generally raise the confidence
in applying the classical Kosterlitz-Thouless theory to real
magnetic systems (consisting of quantum spins) in the
spirit of an effective field theory and with respect to crit-
ical behavior, where many details of the system can be
expected to be unimportant.

The symmetry properties of such vortices lead to a “re-
duced” construction of vortex-like excitations in terms of
exact eigenstates of the Hamiltonian as described in the
foregoing section. We obtain vortex-like quantum states
involving only two different energy levels or, in particular
cases, exact eigenstates having vortex-like features. More-
over, we find such states, which have unambiguously the
properties of a classical vortex and a very simple time
evolution, even at energies which are much lower than the
classical vortex energy. This may, on the other hand, in-
dicate some important modification of the role of vortices
in the quantum system compared with the classical case.
Concerning this issue further investigations are desirable,
which may possibly start from the construction scheme of
vortex-like excitations in terms of exact eigenstates given
in this work.

The approach presented here is expected to be useful
also for other cases like non-planar vortices in ferromag-
nets or vortices in antiferromagnets.
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